কোনো পরিবাহীর মধ্য দিয়ে তড়িৎ প্রবাহ চললে এর আশেপাশে কোনো বিন্দুর চৌম্বকক্ষেত্র B এর মান বের করার জন্য লাপ্লাস একটি সূত্র প্রদান করেন যা লাপ্লাসের সূত্র নামে পরিচিত। জীন ব্যাপ্টিস্ট বিয়োঁ এবং ফেলিক্স স্যাভা সর্বপ্রথম পরীক্ষার মাধ্যমে লাপ্লাসের সূত্রের সত্যতা প্রমাণ করেন বলে এই সূত্রটিকে বিয়োঁ-স্যাভার সূত্রও বলা হয় ।
কোনো পরিবাহীর ক্ষুদ্র দৈর্ঘ্য dl এর ভেতর দিয়ে যদি I তড়িৎ প্রবাহ চলে তাহলে পরিবাহীর ঐ অংশের মধ্যবিন্দু থেকে কোণে r দূরত্বে অবস্থিত কোনো বিন্দু P তে [চিত্র ৪.৭] চৌম্বক ক্ষেত্র এর মান হবে
… (4.5)
এখানে K একটি সমানুপাতিক ধ্রুবক। এর মান রাশিগুলোর একক ও মাধ্যমের চৌম্বক ধর্মের উপর নির্ভর করে।
এস. আই এককে চৌম্বকক্ষেত্রকে টেসলা (T), তড়িৎপ্রবাহকে অ্যাম্পিয়ার (A) এবং দৈর্ঘ্য ও দূরত্বকে মিটার (m)-এ পরিমাপ করলে শূন্যস্থানে বিয়ো-স্যার্ভার সূত্রের সমানুপাতিক ধ্রুবক K-এর মান পাওয়া যায় 107 TmA এস. আই পদ্ধতিতে এই সমানুপাতিক ধ্রুবককে লেখা হয়,
এখানে হচ্ছে একটি ধ্রুব সংখ্যা যাকে শূন্যস্থানের চৌম্বক প্রবেশ্যতা (permeability of free space or vacuum) বলে। এর মান হচ্ছে,
সুতরাং শূন্যস্থানে বিঁয়ো-স্যাভাঁর সূত্রের রূপ হলো,
.. (4.6)
তড়িৎ প্রবাহের ফলে সৃষ্ট চৌম্বকক্ষেত্রের মান মাধ্যমের ওপর তথা মাধ্যমের চৌম্বক প্রবেশ্যতার ওপর নির্ভর করে। । চৌম্বক প্রবেশ্যতাবিশিষ্ট মাধ্যমে বিয়োঁ স্যার্ভার সূত্রের রূপ হলো,
.. (4.7)
সম্পূর্ণ তড়িৎবাহী পরিবাহীর জন্য P বিন্দুতে চৌম্বক ক্ষেত্র এর মান হিসাব করতে হলে (4.6) বা (4.7) সমীকরণকে যোগজীকরণ করতে হবে। সুতরাং শূন্য স্থানের জন্য বিয়োঁ-স্যাঁভার সূত্র
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>=</mo><mo>∫</mo><mfrac><mrow><msub><mi>μ</mi><mn>0</mn></msub></mrow><mrow><mn>4</mn><mi>π</mi></mrow></mfrac><mfrac><mrow><mi>I</mi><mi>d</mi><mi>l</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>θ</mi></mrow><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><msub><mi>μ</mi><mn>0</mn></msub></mrow><mrow><mn>4</mn><mi>π</mi></mrow></mfrac><mo>∫</mo><mfrac><mrow><mi>I</mi><mi>d</mi><mi>l</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>θ</mi></mrow><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></math>
বায়ু বা শূন্যস্থানে একটি দীর্ঘ ও সোজা পরিবাহী তার XY বিবেচনা করা যাক [চিত্র ৪.৮]। এর ভেতর দিয়ে X থেকে Y এর দিকে I প্রবাহ চলছে। এই তড়িৎ প্রবাহের ফলে P বিন্দুতে সৃষ্ট চৌম্বকক্ষেত্র B হিসাব করতে হবে।
ধরি,
QP = a = পরিবাহীর মধ্যবিন্দু থেকে P বিন্দুর দূরত্ব।
dl = পরিবাহীর মধ্যবিন্দু থেকে l দূরত্বে অবস্থিত পরিবাহীর ক্ষুদ্রাতিক্ষুদ্র দৈর্ঘ্য ।
r = dl এর মধ্যবিন্দু থেকে P বিন্দুর দূরত্ব।
I = পরিবাহীতে তড়িৎ প্রবাহ।
= তড়িৎপ্রবাহ I বা dl এবং OP এর মধ্যবর্তী কোণ ।
এখন বিঁয়ো-স্যাঁভার সূত্র থেকে আমরা ক্ষুদ্র প্রবাহ উপাদানের জন্য P বিন্দুতে চৌম্বক ক্ষেত্রের মান পাই,
এই সমীকরণকে যোগজীকরণ করে অসীম দৈর্ঘ্যের সরল পরিবাহীর জন্য P বিন্দুতে মোট চৌম্বকক্ষেত্রের মান পাওয়া যাবে। যেহেতু পরিবাহীটি অসীম দৈর্ঘ্যের, সুতরাং যোগজীকরণের সীমা হবে l = - থেকে l = পর্যন্ত ।
:- <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>=</mo><mo>∫</mo><mi>d</mi><mi>B</mi><mo>=</mo><munderover accent='false' accentunder='false'><mo>∫</mo><mrow><mi>l</mi><mo>=</mo><mo>−</mo><mi>∞</mi></mrow><mrow><mi>l</mi><mo>=</mo><mi>∞</mi></mrow></munderover><mfrac><mrow><msub><mi>μ</mi><mn>0</mn></msub></mrow><mrow><mn>4</mn><mi>π</mi></mrow></mfrac><mfrac><mrow><mi>I</mi><mi>d</mi><mi>l</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>θ</mi></mrow><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>=</mo><mfrac><mrow><msub><mi>μ</mi><mn>0</mn></msub><mi>I</mi></mrow><mrow><mn>4</mn><mi>π</mi></mrow></mfrac><munderover accent='false' accentunder='false'><mo>∫</mo><mrow><mi>l</mi><mo>=</mo><mo>−</mo><mi>∞</mi></mrow><mrow><mi>l</mi><mo>=</mo><mi>∞</mi></mrow></munderover><mfrac><mrow><mi>d</mi><mi>l</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>θ</mi></mrow><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></math>
এই সমীকরণের r, এবং dl পরস্পর সম্পর্কযুক্ত হওয়ায় এই যোগজীকরণ সম্পন্ন করার জন্য এগুলোকে একটি মাত্র চলকের মাধ্যমে প্রকাশ করতে হবে। এখন ৪.৮ (ক) চিত্র থেকে-
:- - l =a cot
একটি বৃত্তাকার কুগুলী বিবেচনা করা যাক, যার ব্যাসার্ধ । এই কুণ্ডলীর মধ্য দিয়ে I তড়িৎ প্রবাহ চলছে। কুণ্ডলীর কেন্দ্র P বিন্দুতে চৌম্বকক্ষেত্র এর মান নির্ণয় করতে হবে।
ধরা যাক, YX হচ্ছে কুণ্ডলীর ক্ষুদ্রাতিক্ষুদ্র দৈর্ঘ্য dl [চিত্র ৪.৯]।
এখন বিঁয়ো-স্যাভাঁর সূত্র থেকে আমরা কুগুলীর ক্ষুদ্র দৈর্ঘ্য dl এর জন্য কুণ্ডলীর কেন্দ্র P তে চৌম্বকক্ষেত্রের মান পাই,
..(4.11)
এখানে হচ্ছে এবং এর অন্তর্ভুক্ত কোণ। এখন (4.11) সমীকরণকে যোগজীকরণ করে সমগ্র কুণ্ডলীর জন্য P তে চৌম্বকক্ষেত্রের মান পাওয়া যায়। যেহেতু বৃত্তাকার পরিবাহীর দৈর্ঘ্য হচ্ছে কুণ্ডলীর পরিধির দৈর্ঘ্য অর্থাৎ 2πr, সুতরাং যোগজীকরণের সীমা হবে = 0 থেকে l = 2πr পর্যন্ত।
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>=</mo><mo>∫</mo><mi>d</mi><mi>B</mi><mo>=</mo><munderover accent='false' accentunder='false'><mo>∫</mo><mrow><mi>l</mi><mo>=</mo><mi>o</mi></mrow><mrow><mi>l</mi><mo>=</mo><mn>2</mn><mi>π</mi><mi>r</mi></mrow></munderover><mfrac><mrow><msub><mi>μ</mi><mn>0</mn></msub></mrow><mrow><mn>4</mn><mi>π</mi></mrow></mfrac><mfrac><mrow><mi>I</mi><mi>d</mi><mi>l</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>θ</mi></mrow><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></math>
আগেই আালোচনা করা হয়েছে যে, কোনো চৌম্বকক্ষেত্রে একটি গতিশীল আধান একটি বল লাভ করে। এই ৰলকে বলা হয় লরেঞ্জ চৌম্বক বল। ধরা যাক, + q আধানবিশিষ্ট কোনো কণা সুষম চৌম্বকক্ষেত্র তে ঐ বেগে গতিশীল ।
এখন চৌম্বকক্ষেত্র কর্তৃক এর উপর প্রযুক্ত বল,
মান এই বলের মান হলো,
θ
এখানে θ হচ্ছে বেগ এবং ক্ষেত্র এর মধ্যবর্তী ক্ষুদ্রতর কোণ।
সুতরাং কোনো স্থির আধান কোনো চৌম্বকক্ষেত্রে কোনো চৌম্বক বল অনুভব করে না।
২. যদি θ = 0° বা 180° হয়, অর্থাৎ আধানটি যদি চৌম্বকক্ষেত্রের সমান্তরালে গতিশীল হয়, তাহলে Fm = 0 সুতরাং চৌম্বকক্ষেত্রের দিকের সমান্তরালে গতিশীল কোনো আধান চৌম্বক বল অনুভব করে না।
৩. যদি θ = 90° হয়, অর্থাৎ আধানটি যদি চৌম্বকক্ষেত্রের সমকোণে গতিশীল হয়, তাহলে Fm = qvB
একটি গতিশীল আধান কোনো চৌম্বকক্ষেত্রে সর্বোচ্চ এই পরিমাণ বল অনুভব করতে পারে। এই ক্ষেত্রে Fm এর অভিমুখ ফ্লেমিঙের বামহস্ত সূত্র থেকে পাওয়া যায় ।
বাম হাতের তর্জনী, মধ্যমা ও বৃদ্ধাঙ্গুলী পরস্পর সমকোণে প্রসারিত করে তর্জনীকে চৌম্বকক্ষেত্রের () অভিমুখে এবং মধ্যমাকে ধনাত্মক আধানের বেগের ( ) দিকে স্থাপন করলে বৃদ্ধাঙ্গুলী বলের (Fm) দিক নির্দেশ করে। আধানটি ঋণাত্মক হলে বলের দিক বিপরীতমুখী হয়ে যাবে ।
৪. যখন q আধানটি এমন একটি স্থানে বেগে গতিশীল হয় যেখানে একই সময়ে তড়িৎক্ষেত্র চৌম্বকক্ষেত্র ' বিদ্যমান, তখন এর উপর ক্রিয়াশীল বল হয়-
এই বলকে বলা হয় লরেঞ্জ বল।
আরও দেখুন...